
 

 

 
 

 
 
 
 
 
 
 
 

A GLOBAL APPROACH TO 
OPTIMAL SPACE TRAJECTORY 

DESIGN 
 

Massimiliano Vasile  
European Space Research & Technology Centre 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Paper AAS 03-141   

13

PONCE,
1

(ESA/ESTEC), The Netherlands 

th AAS/AIAA Space Flight 
Mechanics Meeting 

 PUERTO RICO 9-13 FEBRUARY 2003 
 

AAS Publications Office, P.O. Box 28130, San Diego, CA 92198 



 

 2

 

A GLOBAL APPROACH TO OPTIMAL SPACE TRAJECOTRY 
DESIGN 

 
Massimiliano Vasile  

European Space Research & Technology Centre 
(ESA/ESTEC),  

The Netherlands 
 

Abstract 
In this paper a combination of Evolution Programming and Branching is 

used to solve some typical problems in space trajectory design: finding a 
number of possible minimum cost transfers, including the global one, between 
two celestial bodies. The idea is to use a limited population evolving for a 
small number of generations, according to some specific evolution rules, in 
subregions of the solution space defined by a branching procedure. On the 
other hand the branching rules are functions of the outcome from the local 
evolution optimization. The proposed combined systematic-heuristic global 
optimization performs quite well on the analyzed cases suggesting the 
possibility of more complex application in space trajectory design. 

INTRODUCTION 
A meaningful part of the mission design process consists of designing the trajectory. Traditionally this 

task has been accomplished using gradient methods, optimal control theory or mathematical tool specifically 
dedicated to each particular problem. Anyway all this approaches can be generally classified as local 
optimization methods where the term optimization is intended not just for finding the minimum or the 
maximum but more in general for finding a solution. Since the problem is generally highly non-linear and 
not necessary differentiable in all the solution space, a significant part of the job is to formulate 
appropriately the problem to make it amenable to a solution using local optimization tools and to produce a 
reasonably good initial guess. In fact it is likely that, despite the global convergence properties of many 
software tools (like most of NLP solvers available at present), the analysts find a local minimum every time 
they seek for a solution, eventually finding the global optimum. This is quite a time consuming process that 
can lead even to a non-satisfactory result. Furthermore due to the relatively poor robustness of some 
approaches (like indirect methods) a good initial guess is often quite hard to find. Finally a complete and 
sophisticated formulation of the problem can generally include discontinuities or integer variables or non-
differentiable functions impossible to handle with standard gradient methods. 

The importance of having an effective and efficient global optimization approach (well known, 
understood and studied in many other fields like chemistry, biology and electronic engineering1) is recently 
emerging even in the space field with studies on procedure and optimization methods to procure a solution 
or even just a first guess solution to complex problems as WSB (Weak Stability Boundaries)2 transfer 
design, the design of trajectories involving multiple swing-bys or a combination of swing-bys and low thrust 
propulsion3,4. 

Most of global optimization techniques can be classified in two main groups: systematic and stochastic 
or heuristic approaches. Systematic methods, like branch and bound approaches, are guaranteed (in exact 
arithmetic) to find the global optimum with a predictable amount of work. On the other hand heuristic 
method, like evolution programming, cannot be proved to find the global optimum with a predictable 
amount of work.  
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In this paper a mixed approach combining a breaching technique and a particular implementation of 
evolution programming5 is proposed to solve some space trajectory design problems. This particular 
combination presents some novel ideas: a migration operator that guides individuals toward promising areas 
of the solution space, a filter operator (in place of common selection operators) ranking families of 
potentially interesting individuals and a particular tunneling6 technique used to find the global optimum. 
Moreover EP is used to obtain lower bound information, to select promising branches and to prune non-
promising ones. Furthermore the algorithm treats both integer and real variables.  

The effectiveness of the proposed algorithm (EPIC) is demonstrated on some typical problems in space 
mission design.  

OPTIMISATION PROBLEM 
Optimization problems in trajectory design can be either unconstrained or constrained; in the former 

case they can be written as: 
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where f is a scalar nonlinear function of a multidimensional vector y defined within the domain D. The 
domain D is a hypercube defined by the upper and lower bounds on the components of the vector y: 
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In the latter case the problem can be written as: 
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Where C(y) is vector of nonlinear constraint functions of the vector y. If problems (1) and (3) are twice 
continuously differentiable and present a single solution, i.e. only one vector y in the domain D minimizes f 
and satisfies C, a nonlinear programming method like sequential quadratic programming (SQP) can be 
efficiently used. This means implicitly that the problem must be formulated properly and can not contain 
non-differentiable quantities. However even in this case the problem may present more than one solution 
within the required domain D.  

If the problem is either non-differentiable, i.e. no gradient method can be applied, or more than a 
solution is expected, a global optimization method must be considered. The idea is to perform an extensive 
search of the solution space D looking for possible solutions to problems (1) and (3). In this respect the 
interest could be more to find  a number of good initial guesses for the nonlinear programming solver than 
finding the global optimum with the required accuracy.  

Methods for global optimization can be generally classified in three categories: approximation methods, 
heuristic methods and systematic methods. 

Approximation methods transform the original problem by means of suitable approximations into a 
simpler global optimization problem that is more tractable. Once a solution for the approximated problem is 
found a local optimization method con be used. 

Heuristic methods contain all methods that cannot be proven to find a global optimum with a predictable 
amount of work. Most stochastic methods are in this class of methods. For them it is sometimes possible to 
prove convergence with probability arbitrarily close to 1 but with a number arbitrarily big of function 
evaluations. The simplest heuristic method is multiple random start, consisting of picking random starting 
points and performing local optimizations from these points. Most heuristics can be regarded as techniques 
devised to speed up this process of local/global search by picking the points more carefully. 

Systematic methods contain all methods that (in exact arithmetic) are guaranteed to find the global 
optimum with a predictable amount of work.  The bound on the amount of work is anyway quite high- 
exponential in the problem characteristics. The simplest systematic method for bound constrained problems 
is grid search where all points on finer and finer grids are tested and the best point on each grid is used as 
starting point for local optimization. The number of grid points grows exponentially with the dimensions of 
the problem and so does the amount of work. More efficient systematic methods generally combine 
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branching techniques with one or several local optimization procedure, convex analysis, interval analysis 
and constraint logic. Even though systematic methods are generally more reliable then heuristics they need, 
to be efficient, some level of insight into the problem and the structure of the objective function. If the 
problem is represented by a black box then they may not find the global optimum in a reasonable amount of 
time. 

A well known stochastic method is represented bye Genetic Algorithms that make use of analogies to 
biological evolution by allowing mutations and crossing over among candidates for good local optima in the 
hope to derive even better ones. The original concept of Genetic Algorithms is to code a solution of the 
problem under study in the form of a binary string in which each binary number represents a chromosome of 
the “DNA” (or genotype) of the solution. More sophisticated genetic algorithms make use of the data 
structure of the problem to code the individual in the more appropriate way. For example if the problem 
contains only floating point variables a floating point coding is more accurate and efficient than a binary 
coding. In general all methods that resort to some heuristics concepts derived from biological evolution can 
be defined evolution programming methods. 

Among systematic methods there are some that split the solution domain on the base of some local 
information. Each time the domain is split, a number of new branches are created, each branch corresponds 
to a further exploration of the solution space and each subdomain represents a node that can be expanded 
and explored further. Therefore a branching scheme generates a sequence of rooted trees of boxes whose 
leaves cover the feasible set. If the diameter of all the boxes and all leaves converge to zero, convergence of 
the algorithm is straightforward.  

Proposed optimization approach is composed of a stochastic step and of a systematic step. The 
stochastic step is performed using evolution  programming and is meant to obtain information on the 
possible presence of optima in a subdomain Dl⊆ D. On the other hand the systematic step is performed 
through a branching approach and is used to partition the domain D into subdomains Dl. where the presence 
of an optimum is expected. Each subdomain may or may not contain the global optimum but the systematic 
exploration and the qualification of each subdomain on the base of the best solution found and the volume 
of the subdomain, allows to find a number of optima and eventually the global one. 

EVOLUTION PROGRAMMING 
Present implementation of evolution programming is based on four fundamental operators: mutation, 

migration, mating and filtering. It should be noticed that all of them operate both on real and integer 
numbers therefore each individual, represented by a vector y, contains in the first m components integer 
values and in the remaining s components real values. 

Mutation. Mutation operates in three different ways: generates a random number, taken from a gaussian 
distribution, within the domain D or within each subdomain Dl, for each component of y; generates a 
symmetric perturbation of a selected component yi with respect to its original value within an interval in a 
neighborhood of y; generates an asymmetric perturbation of a selected component yi with respect to its 
original value with in an interval in a neighborhood of y. A third mutation scheme exchange a random 
componet of the individual with one of the bounds. 

Mating. The mating procedure takes two individuals and generates one or two children mixing the 
genotypes of the two parents. Four schemes are used to mate individuals: 

• Single point crossover which simply exchange part of the genes between the two parents 
• Blending, also known as arithmetic crossover, which generates a new individual with an 

interpolation of the two parents: chosen two individuals y1 and y2 and a random number α,  the 
resulting child will be given by:   

123 )1( yyy αα −+=                                                                (4) 
• Extrapolation generates a new individual on the side of the best individual between the two parents 

at a distance from the best parents equal to the vector connecting the two parents: 
2123 )( yyyy +−= α                                                                (5) 
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• Second order extrapolation mating generates a child using two parents and the child generated with 
an extrapolation mating. If p is the vector difference between y1 and y3 and f1,f2,f3 are the fitness 
values for the three individuals y1, y2,y3 respectively, then a second order one-dimensional model of 
the fitness function is built and the new child is generated taking the minimum of the resulting 
parabola (see Figs. 1 and 2): 

min
14 χpyy +=                                                              (6) 

)(),,(),,( 1
min

3212
min

321
min yyyyyyy fbaf ++= χχ                               (7) 

The mating operator is used also to prevent an undesirable effect of migrations: if more than one 
principal individual is in the basin of attraction of the same solution, it is likely that all of them will move 
toward the same point with a resulting waste of resources. Therefore if two or more principal individuals are 
colliding (intersecting their migration regions) a repelling mechanism is activated which mates the worse 
individual (between two colliding) with the boundaries or the subdomain Dl: Each component of the 
selected individual is blended with the value of the furthest bound, projecting the individual into a random 
point within Dl., according to the following relation:  

12 )1( iii yby αα −+=                                                                     (8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Deterministic criterion for the generation of a migrating subpopulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Stochastic criterion for the generation of a migrating subpopulation  
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Migration  
The migration process generates a subpopulation in a neighborhood of an individual y the best 

individual of the subpopulation, if better than the parent, survives to the next generation instead of the 
parent. The subpopulation is generated using either a stochastic or a deterministic procedure. The 
deterministic procedure generates a child along the coordinates on the boundary of the migration region. 
Then an extrapolation mating produces a second child toward the most promising boundary. If the second 
and the first children are not the same a third one is generated using a quadratic interpolation of the two 
previous children and the parent. The same scheme is repeated for all the coordinates and all the children 
generated with the quadratic interpolation are then collected and used to generate an extrapolation child 
whose components are the components of all the second order children (see Fig.1).  

The stochastic procedure samples the migration region generating a child randomly then an extrapolation 
mating is performed on the side of the best individual. The two resulting children and the parents are then 
used to build a quadratic model and a third child is generated taking the minimum of the parabola. The 
procedure is repeated until a number of children equal to the number of coordinates has been generated (see 
Fig. 2). 

The micro population is generated within a migration region in a neighborhood of a principal individual; 
the migration region is a hyper parallelepiped S=S1xS2…xSn ⊆Dl, where Si is a subinterval containing the 
value of the component yi . Each subinterval Si is asymmetric, allowing the migration to depart from one of 
the boundaries. Furthermore the migration region S contracts or expands according to a migration radius ρ 
whose value depends on the differential improvement of each individual from one generation to another. 

The migration radius 
If fk

j is the fitness value associated to a an individual j at generation k and fk+1
j the fitness value 

associated to the same individual at generation k+1, we define the differential improvement as: 
j

k
j

k
j ffdf −= +1                                                                    (9) 

The migration radius is defined as the ratio between the value of the bounds of  the migration region of 
the j-th individual bj and the value of the bounds b of the domain D:  

i

j
ij

b
b

=ρ                                                                                    (10) 

During convergence the migration radius is reduced or enlarged depending on the fitness of the 
individuals inside the migration region and the differential improvement of the principal individual from one 
generation to another. If none of the children of the subpopulation is better than the parent the radius is 
reduced. Different from a previous implementation[9], where the migration radius was a function of the 
differential improvement, in this implementation a slower contraction of the migration region has been 
implemented computing the radius according to: 
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if from generation k to generation k+1 the differential improvement increases, then the migration radius 
is recomputed according to the prediction: 

)1log(1 jej
k

j
k +−=+ ηρρ                                                              (12) 

where η is equal to 2.1 in this implementation and ρmin has been set to 1e-5. It should be noticed that the 
value of ρj

k+2 depends on the ranking of the associated individual: the migration radius of a bad individual is 
therefore larger than the best individual allowing a bigger mutation. In fact if a principal individual is 
converging to a solution it is not desirable to move it too far from its position. 

For integer numbers migration operates in the same way but the migration regions and migration radius 
are generated and treated differently. In particular ρimin is 1 and ρ is defined as:  

]),)2logmin[int min2 i
j

mig
j

k fj(( ρρ ∆+=+                                                 (13) 
The migration region is therefore contracted differently for real and for integer variables allowing a 

better spatial exploration. 
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Filtering: instead of traditional selection mechanisms based on fitness here a permanent population of n 
individuals is maintained from one generation to another. Each individual has a chance to survive provided 
that it remains inside the filter. The filter ranks all the individuals on the base of their fitness from the best to 
the worst. All the individuals with fitness lower than a given threshold are completely mutated while 
migration is applied to all individuals within the filter. This allows each of the individuals within the filter to 
evolve toward a different local optimum. The filter basically operates a simple sorting procedure but, since 
individuals in the upper part of the filter are strongly mutated, it is likely that they are replaced by quite 
different new individuals coming from the associated subpopulation and migration.  

Not only does the position in the filter determines the level of mutation of the individual but also the 
mating process is influenced by the ranking. In particular individuals out of the filter are totally mutated at 
every generation using two operators: a random mutation and a boundary mutation. On the other hand 
mating is operated on all the individual out of the filter combining them with individuals in the filter. After 
mating the resulting children survive according to their predicted position in the filter. 

Therefore in the pure EP step  migration is used to explore locally the solution space and two 
mechanisms are used for global exploration: mating and mutation of individuals outside the filter. It should 
be noticed that if several minima are clustered the mixed systematic-stochastic generation of subpopulation 
should guarantee anyway to find locally the best minimum of the cluster. 

COMBINED EVOLUTION BRANCHING 
Even though the filter increases the chances of finding several optima and eventually the global one, 

convergence is not guaranteed due to the stochastic nature of the process. Therefore a systematic step is 
taken on the basis of the output of the evolution algorithm. The domain D is partitioned generating a number 
of subdomains. Each subdomain is qualified ad explored further according to its qualification. The 
partitioning, or branching, process begins taking the worst individual, which is out of the filter, and cutting  
D into q subdomains, corresponding to q new branches (or nodes). Each node may or may not contain an 
individual coming from the previous step of evolution and the relative volume of the node depends on the 
position of the cutting point. For each node the ratio between the relative number of individuals and the 
relative volume is computed and the resulting quantity defines how necessary is a further exploration of the 
node: 
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this quantity is then added to a fitness ϕ defined as: 
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where J is the number of individuals in subdomain Dl. The node is then qualified by the quantity: 
ll DDnq υϕϖυ +−= )1(                                                           (16) 

where ν is weighting factor that weights how reliable the result coming from the evolution step is 
considered. If ν is 1 only the nodes with low fitness are explored because the EP algorithm is considered 
reliable enough to explore exhaustively the domain D without leaving any region unexplored, on the other 
hand if ν is 0 the result from the EP algorithm is considered to be not reliable due to a premature 
convergence or to a pure exploration of the solution space. It is clear in fact that a node with a large number 
of individuals with high fitness (at the top of the ranking scale) has a high probability to contain the global 
optimum if the EP has explored exhaustively the solution space, on the other hand if the volume of the node 
is large and the number of individuals low it is likely that the EP step was not able to evaluate sufficiently 
the solutions pace in this region and therefore the node need still to be explored in the future.  
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It should be noticed however that, if the EP have converged in a given subdomain, nodes not containing 
any individual, even though they have a large volume, are unlikely to contain the solution. For a fast search, 
therefore, only nodes presenting high fitness and large volume are explored further.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Sketch of the branching procedure  
The process is quite effective to explore the entire solution space in great detail but produces often, 

unnecessary reevaluation of many regions where a local minimum has already been found. The result is a 
rediscovery of local minima in subdomains getting progressively smaller and smaller with a waste of 
computational resources. In order to avoid this phenomenon the original domain is partitioned using more 
than one individual.. If the worst individual is useful to determine an upper bound on the objective function 
and therefore to cut the solution space, converged individuals suggest where a further exploration is 
unnecessary. All converged individuals are ranked depending on the value of their fitness function, the 
principal cut is then, as stated above, performed using coordinates of the worst individual, the second cut 
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takes the worst converged individual and so on up to the best converged individual. A cartoon of the multi-
partition procedure is depicted in figure 3. 

In addition the cutting individuals sets an upper bound on the possible value of the objective function 
therefore all future individuals with a higher value of the objective function are rejected. For all other 
individuals the cutting one works as a repeller forcing a migration toward more promising areas of the 
solution space.  Repulsion is performed through a tunneling operator. The basic idea is that all the regions of 
the solution space below certain fitness are flooded and all the individuals that want to survive must migrate 
toward a dry land. The shape of the territory is changed due to the flooding according to what we called 
hydrophobic tunneling and the individual, setting the flooding level, works as a repeller.    

( )[ ]011
ffek −−−= γψ                                                                    (17) 

τ
σψ

0
2

rr −
=                                                                        (18) 

 Stopping Criterions 
There are two combined stopping criterions: one for local convergence and one for global convergence. 

Both are based on some heuristics and not on any rigorous prove of global converge. Local convergence of 
each subpopulation is determined by the differential improvement of the principal individual and by the 
migration radius. In a convex problem both should tend to zero in a neighborhood of the solution. Since 
each principal individual is supposed either to converge to a different minimum or not to converge (letting 
just the individual with highest rank in the filter to converge) a global stopping criterion for the EP is the 
convergence of the filter. 

The convergence of the filter is determined by the convergence of all the individuals if they are not 
clustered, i.e. if their migration regions are not intersecting, and by the convergence of the best individual 
otherwise. It must be noticed that when EP are used in conjunction with branching the convergence of the 
filter is not usually necessary since the branching takes care of the global exploration of the solution space. 

The global convergence of the branching part is based on two ideas: the dimensions of each node and the 
convergence of EP in each subdomain. If a node reduces below a given tolerance it is discarded and 
considered converged, therefore if no nodes are left, the algorithm stops, on the other hand if EP have 
converged in all subdomains and no improvement is reported after branching, i.e. no new local minima are 
discovered, the algorithm stops since it is likely that all local minima have been already found and no further 
exploration of the solution space is required.  

TEST CASES 

Optimal Launch Window Problem 

In an ecliptic reference frame centered into the Sun and considering the gravity action of the Sun only, 
the dynamic of a spacecraft is governed by the following differential system: 

rv

vr

3r
µ−=

=

&

&

                                                                      (19) 

where µ is the gravity constant of the Sun, r is the position vector of the spacecraft and v is its velocity 
vector. Now in the hypothesis of Keplerian motion taking two points in space and fixed a time of flight 
(TOF) T, Lambert’s problem consists of finding the transfer arc from one point to the other in the given 
time. If this is applied to the problem of finding the optimal transfer trajectory from Earth to Mars, an 
infinite number of trajectories can be generated, each one characterized by a different departure date from 
the Earth t0, a different time of flight T and a different departure velocity ∆vE from the Earth and arrival 
velocity ∆vM at Mars. The arrival and departure velocities can be related to the cost in terms of propellant to 
transfer a spacecraft from the Earth to Mars, therefore the following objective function can be defined: 

ME vvf ∆+∆=                                                                 (20) 
which must be minimized with respect to the departure time and transfer time. 
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If f is plotted with respect to t0 and T the result can be seen in figures 4 and 5. If an upper limit is 
imposed on the maximum total ∆v allowed for an interplanetary mission, the contour plot 5 shows only 
regions characterized by a total ∆v lower than the require limit. These regions define what are generally 
called launch windows, i.e. intervals of possible launch dates. For the problem under study t0 is defined in 
the interval [3000, 6000] expressed in Modified Julian Day (i.e. number of days from 1st January 2000) 
while the TOF is defined in the interval [100,400] expressed in days. In the given domain D of launch dates 
and transfer times, there are at least 8 local minima but actually only one is global with a value of 5.667 
km/s. However a second minimum can be found with a value slightly different 5.699 km/s but for a 
completely different launch date. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4     Three-dimensional plot of the total ∆∆∆∆v problem: the objective function is the sum of the 

∆∆∆∆v required to leave the Earth and the ∆∆∆∆v required to insert a spacecraft into Mars orbit. 
 
Here an example of the results obtained with the combination of EP and branching is reported. At first 

only the EP algorithm is tested to verify the effectiveness and efficiency of the new operators. The problem 
is solved with no branching step running the EP several times and checking the obtained group of minima. 
The stopping criterion in this case is not the complete convergence of the filter but just of the best 
individual. A steady population of 10 individuals has been used with a filter containing a maximum of 7 
individuals: the individuals outside the filter are therefore strongly mutated. A tolerance of 1e-4 on df and a 
tolerance of 1e-4 on the migration radius have been used for the stopping criterion. Since the nature of the 
method is stochastic, 20 runs have been performed and the resulting number of function evaluations is the 
average of all 20 runs. It should be noticed that only three, out of 20, converged to the second better 
minimum without being captured by the basin of attraction of the best minimum. All the others have the 
global minimum in the first three positions of the filter and among them, ten have the global minimum as 
first value. 

The accuracy of the outcome form the EP step has been verified with an SQP refinement of all the 
solutions. An example of a typical run is plotted in Figure 6 and the result is reported in table 1. Notices that 
the algorithm successfully found 5 minima (among them the global one in the upper left part of the plot) 
signed with a fat dot, the other individuals, represented by crosses, are values rejected by the filter. It is clear 
form this example that some minima could not be taken into account by the algorithm and among them there 
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could be the global one especially if, as in this case, more than one minima have similar values with similar 
basins of attraction. 

As further demonstration of the effectiveness of the algorithm the same problem has been solved using 
genetic algorithms, with a floating point data structure and encoding, and a pure Branching methods with a 
Pareto principle for box selection. implemented in the code DIRECT7. DIRECT splits at each step all boxes 
for wich the pair (volume, midpoint value) are not dominated by other such pair. Here (v,f) is dominated by 
(v’,f’) if both v’<v and f’<f. In particular, the box of larget volume and the box with the best function value 
are never dominated and hence always split. 

The Genetic Algorithms  implementation used here (and freely available in the matlab toolbox GAOT8) 
uses a floating point representation of the genotype. The following genetic operators have been used on a 
population of 20 individuals: boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation, 
arithXover heuristicXover simpleXover. A maximum of 500 generations are allowed and total number of 
function evaluations are computed up to convergence over 20 runs. 

In the branching algorithm the number of iterations determines the stopping criterion and the total 
number of function evaluations. Depending on the initial domain D and therefore on the initial sampling of 
the solution space the number of iterations to reach a given tolerance changes dramatically.  
The result of the comparison among the three approaches is summarised in table 1 where the actual global 
optimum is reported along with the results coming from the three optimisations. Next to the best value 
obtained for the objective function the percentage of times, over 20 runs, the algorithm was able to find the 
global optimum is reported. As can be seen the systematic approach is always able to converge to the global 
minimum with the required accuracy, however the number of function evaluations strongly depends on the 
domain, i.e. on the initial sampling of the solution space done by DIRECT. 
The proposed implementation of evolution algorithms performs quite well, better then both DIRET and 
GAOT, thanks to the filter and to the recombination and migration operator. Even though, as stated before, 
the global minimum is always in the filter at the end of the optimisation it is not true that the algorithm is 
able to recognise it all the times.  

Table 1. Pure Evolution step with convergence of the best individual 
Value Global Optimum GAOT DIRECT Epic 

J (km/s) 5.6673 5.6673 (40%) 5.6674 (100%) 5.6673 (75%) 
t0 (MJD) 3573.7 3573.5 3573.9 3573.5 

TOF (day) 324.05 324.11 323.85 324.34 
Function 

Evaluations 
- 1374 (90-)1183 351 

 
The second test includes branching and was used to verify the effectiveness of the branching criterion 

and to improve the exploration of the solution space. 
The first run of EP spans the entire domain finding a number of minima. Some regions of the solution 

space result however unexplored since the choice of the initial population and of regenerated principal 
individuals is basically a random process, furthermore it might happen that even though one individual is 
initially in the attraction basin of a minimum the filter reject the individual, putting it at the bottom of the 
list. This happens especially when some other individuals are close to convergence. Thus some regions 
result to be poorly explored because all principal individuals generated do not survive enough to converge 
toward a local minimum. Figure 7 reports the result of a branching step from a run of the combined 
systematic-stochastic algorithm. The first cutting point is the worst of the individuals rejected by the filter, 
this ensures that the resulting branches correspond to either unexplored regions or regions containing some 
already found minima.  Branches containing converged individuals are correctly partitioned using these 
individuals, and the resulting nodes with a high volume and low density as well as branches with high fitness 
are evaluated further. After this branching step, however the algorithm stopped declaring convergence since 
no improvement was found. Using this technique over other 20 runs, the algorithm was always able to find 
the global optimum plus all the other 7 optima. A summary of the obtained minima for the case represented 
in Figure 7 is reported in Table 2 where the values found by the evolution branching algorithm (EPIC) are 
compared to the values computed refining each solution with a SQP algorithm. 
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Table 2. Summary of minima found by the evolution branching algorithm 
Sol. 1 2(b) 3 4 5 6 7 8 

SQP 3573.7 
324.0 

4330.3 
306.63 

4340.0 
252.11 

3598.82
76.6 

5088.3 
295.1 

5860.12
77.06 

5909.5 
201.41 

5123.1 
221.28 

Epic 3573.43
24.1 

4332.43
08.85 

4347.4 
254.93 

3599.52
77.58 

5084.3 
295.5 

5864.9 
292.58 

5909.5 
201.82 

5125.9 
223.5 

(b) This solution is a minimum for the subdomain but it is actually in the basin of attraction of sol 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5     Contour plot of the total ∆∆∆∆v problem: blue region have low ∆∆∆∆v, red regions have high ∆∆∆∆v 
while white areas between two launch windows have excessive cost higher than 15 km/s.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6      Result from a pure EP step: magenta fat dots are optimal solutions accepted by the filter 
while blue crosses are individuals rejected by the filter.      
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Figure 7 Branching Step  
 

Optimal Earth-Mars Transfer with Electric Propulsion 

In this second problem the transfer from the Earth to Mars is performed using an electric propulsion system. 
The departure C3 is zero and the objective function is represented by the propellant mass which must be 
minimized. The engine is continuously on and the thrust direction is defined by a simple shaping law: 
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the dynamic of the spacecraft is therefore governed by the following system of equations: 
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                                                       (22) 

where T is the maximum thrust available and it was assumed to be 0.3N, while the Isp has been taken equal 
to 1700s and the initial mass equal to 2000kg .The control vector ζ is defined as: 
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                                                                  (23) 

where Ω is the rotation matrix from the local along-track, cross-track, normal reference system attached to 
the spacecraft to the three dimensional Cartesian inertial reference frame. 
Now if each individual is coded as a real value vector containing the departure date t0, the transfer time P 
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and the two parameters characterizing the shape of the control:  
TuuPt ],,,[ 210=y                                                        (24) 

the optimization problem results to be: 
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                                                   (25) 

The problem is scaled dividing radius by 384000 (mean Earth-Moon distance), upper and lower bounds 
defining the domain D are summarized in Tab.3. .The fundamental difference with respect to the previous 
transfer problem consist of the presence of the constraints. Furthermore the constraints are nonlinear end do 
not present an explicit analytical formulation. One way to proceed is to weight the constraints in the 
objective function. In this particular case the weights applied have a physical meaning since the two 
constraints and the objective function do not have the same importance. In fact the first goal is to reach the 
target planet, among all solutions satisfying this constraint, only the ones with minimum arrival velocity 
have to be considered and among them the one with minimum propellant consumption is the desired 
solution. The objective function is then augmented in the following way: 

rvtmtmf f δδ ++−= 2/1000/))()(( 0                                         (26) 
Table3. Upper and Lower bounds defining the domain D for EP Earth-Mars transfer 

Value t0 (MJD) P (day) u1 u2 
Lower bound 4000 500 -π -π 
Upper bound 7000 800 π π 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 . A group of solutions found by the evolution-branching algorithm 
The combined evolution-branching algorithm is then applied to problem and the result is reported in 

Fig.8 where a group of solutions found have been plotted. In order to check the accuracy of the result all the 
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solutions have been processed with a gradient method, a comparison can be seen in Tab.4, the best two 
solutions found have been plotted in Fig. 9. Then the same problem has been solved also using DIRECT and 
GAOT and the results were reported in Tab. 4 for comparison. 

It is remarkable how DIRECT was not able to converge after a considerable number of function 
evaluations, on the other hand GAOT was able to find a good minimum but just once over 20 runs. In fact 
the average value for the solutions found by GAOT is comparable with DIRECT. 

 
Table 4. Pure Evolution step with convergence of the best individual 

Value SQP GAOT DIRECT Epic 
mf (kg) 977.1 1089.9 868.68 977.08 
δr (km) 6.2e-7 25375 5500800 2181.2 

δv (km/s) 1.5997  2.1203 1.2125 1.5987 
t0 (MJD) 4900.7 5673.4 5500 4900.7 

u1 -2.5084-1 -2.7922 1.8617 -2.5085-1 
u2 -2.4875-1 8.796e-1 -2.0944 -2.4879e-1 

P (day) 658.14 585.55 727.78 6581.5 
Func. Eval. - 7000a 66049 6200 

aThe number of function evaluations is the mean value per run over 20 runs 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Optimal low-thrust transfer from the Earth to Mars 

Multiple swingby Transfer to Pluto 
The problem is to find an optimal transfer from the Earth to Pluto passing by a predefined number of 

intermediate stops (actually swingbys). The propulsion system is chemical, anyway the trajectory, which 
minimize the overall cost in terms of ∆v, is here regarded as optimal for both chemical and electric of 
propulsion and is used as first guess for a further optimization with a better model of electric propulsion 
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using the Direct Interplanetary Trajectory Analysis software DITAN [10].  
A deep space ∆v maneuver has been inserted along the arc connecting two subsequent bodies at an 

unknown point in time and space, each swingby is modeled collapsing the sphere of influence in one single 
point linking the transfer arcs before and after the swing by, therefore the following relation must hold: 

 poi rrr ==                                                                             (27) 

where ri and ro are the incoming and outgoing position vectors respectively and rp is the position vector 
of the planet. Since the swingby is considered un-powered the following relationships between the incoming 
and the outgoing velocities must hold: 

oi v~v~ =                                                                                 (28) 
Furthermore, the outgoing relative velocity vector is rotated, due to gravity, by an angle π-2β with 

respect to the incoming velocity vector and therefore the following relation must hold: 
2

ii
T
o v~β)cos(2v~v~ −=                                                                     (29) 

where, considering µ the gravity constant of the planet, the complementary angle of rotation of the 
velocity is defined as: 
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                                                                   (30) 

All quantities with a tilde are relative to the swing-by planet and pr~  is the periapsis radius of the swing-
by hyperbola. Constraints given by equation (27) can be explicitly solved while constraints on the velocity 
require the rotation of the velocity vector iv~ of an angle equal to δ=π-2β in the orbit plane of the hyperbola, 
which is unknown. Therefore another parameter ω has been introduced, which represents the rotation angle 
of a plane around the vector iv~  

iiQ nvn )~(=ω                                                                         (31) 

io Q vnv ~)(~
ω=                                                                     (32) 

where Q( iv~ ) and Q( ωn ) are the two rotation matrices defined by the quaternions: 
T

i sin 




=
2

cos,
2

~ ωω
ω vq                                                                          (33) 

and 
T

sin 




=
2

cos,
2

δδ
ωδ nq                                                                         (34) 

respectively and ni is the normal to the projection of the incoming vector onto the xy plane (see Fig.12). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Cartoon of the trajectory model 
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The outgoing conditions are then propagated for a time ti up to the deep space maneuver, from that point on 
a coast arc with period Ti is computed solving a Lambert’s problem from the maneuver point to the 
destination planet (see Fig.10). Therefore, starting from a planet or a generic point in space it is possible to 
reach a desired point in space passing by a number of swingbys and providing a corresponding number of 
∆v maneuvers. The problem can then be written in the following form: 

D

v)    f(
N

i
i

∈

∆= ∑
=

y

y
0

min                                                                               (35) 

where N is the number of planets after departure and the vector y is defined as: 
T

NNpiiiip TtrTtrTtvt ],,...,~,,,,...,~,,,,,[ 111100 ωω∆=y                                            (36) 
The problem in this form is amenable to a solution with an algorithm for unconstrained global optimization. 
First of all the opportunity to use a swingby of the Earth or of another planets of the inner solar system has 
been investigated. The vector y is then extended to include a combination of possible planetary encounters: 

T
NNpiiiipNi TtrTtrTtvtppp ],,...,~,,,,...,~,,,,,,...,,...,[ 111100,0 ωω∆=y                                (37) 

where pi is the reference number of planet i-th. Now considering a departure from the Earth and two 
possible encounters before Pluto we take p0=3,pN=9 (with N=3) ,for the other quantities of vector y upper 
and lower bounds defining domain D are summarized in Tab.5.Notice that in this case no intermediate deep 
space maneuver is inserted for the first transfer and therefore the first ∆v is computed just solving a Lambert 
problem. The swingby altitude hi is inserted as a ratio between the actual pericenter of the swingby 
hyperbola 

pir~ and the mean radius of the planet. The final transfer time TN has an upper limit of 3000 days 
because a fast transfer to Pluto is required, the launch date has a lower limit 5000MJD because the departure 
must be in the range [5000,8000]. In this interval there are many different possible launch windows with 
different characteristics. After 3000 evaluations of the function f with the combined evolution-branching 
algorithms we obtain a number of interesting optima. Three families of solutions found by EPIC are 
represented in Fig. 11 and the trajectories corresponding to two of the best solutions found are plotted in 
Fig.13. It is remarkable that most of the optima found have a sequence p=[3,3,5,9]T which has been 
interpreted as if a direct launch to Jupiter was the optimal strategy and no other swingbys were required. 
Actually an optimal [3,2,5,9] sequence was found with a ∆v 219.5m/s higher than the best [3,3,5,9], 
however the launch window (corresponding to the basin of attraction of the optimum) is apparently smaller 
and therefore unfavorable. The best solution found for the sequence [3,3,5,9] is reported in table 6 along 
with the electric propulsion version optimized by DITAN(considering an Isp=6000s and a thrust of 0.2N). 
For comparison, the best one of a second group of solutions of the family [3,3,5,9] represented in Fig.11, is 
reported too. 

Table 5. Upper and lower bounds defining domain D 
Value Lower Bound Upper Bound 

p0 3 3 
p1 2 5 
p2 2 9 
p3 9 9 

t0(MJD) 5000 8000 
T1(day) 100 300 

ω1 -π π 
h1 1 2.5 

t2(MJD) 10 100 
T2(day) 100 600 

ω2 -π π 
h2 10 100 

t3(MJD) 10 100 
T3(day) 2000 3000 
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Table6. Earth to Pluto (EJP)Transfer 
Value Best Solution EP optimized Best Solution 2 EP optimized 

C3 139.85 km2/s2 139.85 km2/s2 121.42 km2/s2 121.42 km2/s2 
Launch Date 22/01/2018 22/01/2018 27/12/2016 27/12/2016 

Jupiter Encounter 30/03/2019 01/04/2019 11/05/2018 17/06/2018 
Swing-by altitude 14.214  12.872  10 10 

∆v maneuver 1.37e-3 km/s - 3.5424 km/s - 
Pluto Arrival 24/09/2027 10/09/2027 15/10/2026 12/12/2026 

Mass at Launch - 2500 kg - 2500 kg 
Mass at Pluto - 2498.54 kg - 2362.21 kg 

Notice that the propellant spent for the electric propulsion version of the second solution is equivalent (in 
the simplified hypothesis of the rocket equation) to a ∆v of 3.34km/s. Considering that DITAN uses 
accurate JPL ephemeris while EPIC uses mean elements, first guess solutions computed by EPIC are quite 
close to the final solution computed by DITAN demonstrating how this approach can be effectively used to 
provide good initial guesses for a more accurate local search. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Three families of potential solutions for the Earth-Pluto transfer 

 

 
 
 
 
 
 
 
 
 
 

Figure 12. Rotation of the incoming vector to the outgoing vector 
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Figure 13. Some EJP optimal first guesses 
 

CONCLUSIONS AND FUTURE WORK 
In this paper a combined systematic-heuristic approach is proposed to solve trajectory design problems 

in which more than one solution is expected and where not just the global optimum should be obtained. The 
proposed combination of evolution programming and branching is suitable for problems characterized by 
differentiable and non-differentiable functions combining integer and real variables. The algorithm is based 
only on local information coming from the evolution of a limited number of individuals in subregions 
defined by a branching procedure. The outcome of each EP step is used to define new branches and to prune 
not promising ones. The particular implementation of evolution programming proposed here presents some 
novel operators like migration and filtering that have given quite good results, compared to Genetic 
Algorithm or pure branching techniques, on the problems under study providing and independent local 
convergence toward several local minima. Furthermore the particular mating procedure has demonstrated to 
be effective to explore widely the solution space avoiding unnecessary clustering of individuals.   

Even though the obtained results must be considered preliminary, the proposed algorithm appears to be 
promising even for more complex space trajectory design problems. The comparison with both pure 
stochastic and pure systematic approaches demonstrates the effectiveness of the combination of both in 
particular when the objective function is a black box. In this respect it must be said that an ad hoch 
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systematic approach specifically dedicated to a certain category of trajectory design problem is expected to 
be more efficient. 

Besides this the algorithm is quite effective as a general tools for problem with bound constraints, at 
present an extension to treat more complex constraints is under development.  
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